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Uncertainty analyses in engineering pro-
fession is often seen as an option, more 
often discussed in research studies and 
data analyses, yet, is it actually the case? It 
is merely included in the engineering 
professional assignments, intertwined in 
basic computations. For example, the 
concept of characteristics strength of con-
crete (and the mean strength is not the 
design parameter).  

We may recall, an announcement from 
OPERA physicists startled the scientific 
community, when they proclaimed to have 
found neutrino particles traveling at 
speeds higher than the speed of light. This 
announcement was made on the 24th of 
September, 2011, where the physicists 
themselves were in disbelief as this could 
be hardly be true. According to Einstein’s 
special theory of relativity, no particle can 
travel at a speed of light (approximately 
299,792,458 m/s). Was the discovery to 
be proven correct, modern theories on 
physics may had to be re-written, just like 
Newton’s theory of gravity was when Ein-
stein proposed the space-time model of 
the universe. However, it was later ob-
served to have been erroneous, and the 
error was attributed to an obvious mistake 
in calculating the travel time of neutrino 
particles. The findings of the experiment 
was brought under so much scrutiny, 
mainly because of the fact that it chal-
lenged a fundamental scientific belief. 
Later on it was declared that the uncertain-
ty in the measurements and propagation 

of uncertainty contributed to an error, 
when rectified, the challenge was faltered. 
It is understandable that even at the top 
end researches, the uncertainty analysis is 
critical and vulnerable, while a mishap 
could lead to unprecedented errors, de-
faulting fundamentals.    

Engineering is a field of profession that 
relies fundamentally on measurements and 
applications are designed based on meas-
urements. Engineering metrology is a 
subject often taught in undergraduate 
curriculum for all engineering disciplines, 
which encompasses the science of meas-
urements. All measurements inherently 
constitute error, which is defined in books 
as the difference between the actual value 
and the measured value. However, in my 
view, if you know the actual value, we may 
never have to take measurements, and in 
case we have the option of getting the 
actual value, we may never resort to taking 
measurements either. What is an error 
and how is it defined? I prefer to use the 
term, UNCERTAINTY instead of error in 
engineering measurements. When we 
take measurements of a variable, we will 
have to make several measurements 
(repeated measurements, or replicates) to 
determine the mean and standard devia-
tion. Suppose all systematic errors in the 
measurements are wrung out, the mean of 
the measurements could then be postulat-
ed as the actual value of the measurement, 
while the standard deviation would dictate 
the uncertainty of the measurement ob-
tained.  

Figure 01 shows the 
histogram of several 
repeated measure-
ments (100,000 in 
this example) taken of 
a variable. The right-
side axis shows the 

frequency of a value of a bin considered 
where the left side shows the correspond-
ing probability. It could be observed that 
the probability of the measurement being 
the mean of the observations 
(approximately 250) has the highest prob-
ability, yet, it is merely a 2% chance (out 
of 100,000 measurements taken). A value 
of mean therefore rarely defines or repre-
sents the actual value, where as 98% of 
the chances are that the measured value is 
not the mean value.  

This is where the statistical confidence 
plays an important role, and delineates 
how confident are we in reporting a meas-
ured value. Suppose I report only the 
mean value, my confidence would be 
approximately 2%. With this scenario, I 
would never be able to find a single value 
that I can report the measurement with 
higher confidence than the mean. How 
else could I increase the confidence? It is 
most certain that I will have to report the 
measurements as a range of values to 
improve my confidence in reporting. Be-
fore we could look into ascertaining the 
range of values with indicative confi-
dence, we need to define the probability 
distribution function (PDF). Based on the 
histogram, we can define the probability 
distribution function (PDF) for the meas-
urement we obtained, as shown by the red
-curved-line in Figure 02.  

The characteristic of the PDF is as such 
that the area below the PDF curve would 
be 1. The probability of a single value 
being the measured parameter would 
therefore be the value it indicates on the 
PDF curve (eg. 250 has a probability val-
ue of approximately 2.6%). The value 
indicated by the straight line on the left 
(5% line) corresponds to a reading of 
220.51. This implies that the probability of 
the measured value being a value less 
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Figure 01: Uncertainty: normally dis-
tributed 
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than 220.51 is 5%. Similarly, the straight 
line on the right (95% line) corresponds to 
a reading of 279.60 which implies that 
the probability of the measured value be-
ing higher than 279.60 is 5%. It is there-
fore reasonable to say that the probability 
of the measured value being within 
220.51 – 279.60 is 90%. In other words, 
the measurer is 90% confident that the 
measured value would be somewhere 
between 220.51 – 279.60. Suppose the 
measurer wants to increase his confidence 
in reporting, he would have to increase 
the range, while decreasing the range 
would decrease confidence level.  

In the example discussed above, the PDF 
was assumed to be a normal distribution, 
which is characteristically symmetric about 
the mean value. Generally, assuming the 
uncertainty arising from random error, a 
normal distribution is considered to be a 
good estimator for uncertainty. However, 
not all distributions could be approximat-
ed to a normal distribution (could be a log
-normal, uniform, triangular, trapezoidal 
etc). Of the other distributions available, 
another important distribution is the log-
normal distribution, which in contrast to 
normal distribution, is characteristically 
asymmetric about the mean. This uncer-
tainty distribution in such cases would not 
be equal on either side of the mean. Fig-
ure 03 shows an example where similar 
number of measurements were taken of 
another engineering parameter, indicated 

by a mean value of approximately 3.0. In 
contrast to Figure 02, the PDF curve in 
Figure 03 could be observed to be 
skewed to the left (shorter tail on the left 
and longer tail on the right). In such occa-
sions, the uncertainty of the engineering 
parameter in consideration needs to be 
analysed with caution, should a normal 
distribution be approximated to represent 
the uncertainty.  

In engineering, we often will have to re-

port our findings in terms of a measured 
value or a value obtained through compu-
tational analysis. As discussed above, 
when we report a value, we will have to 
give the mean and the standard deviation 
or a confidence interval. In this case, it is 
referred to as a two-tailed analysis of un-
certainty, as the uncertainty may sway 
either side and that both boundaries will 
need to be reported. In addition, more 
often, it is assumed that the distribution of 
uncertainty is symmetric about the mean 

(normal distribution) and hence the nota-
tion often is in the form of mean ± inter-
val. In real time analyses, the distribution 
is not always symmetric, and hence this 
notation may have to be adopted to in-
clude two different values for (+) and (-) 
about the mean.  

Often in our engineering analysis, the 
numerical values are subsequently used in 
decision making. The form in which the 
numerical values are reported with uncer-
tainty (two-tailed) is not applicable to the 
decision making exercises. I will consider 
two popular civil engineering related ex-

amples to elaborate the case.  

Case I: Characteristics strength of con-
crete 

We are well aware that an exercise of 
concrete design would result in specifying 
the concrete strength required for a struc-
tural element analysed in the design. If we 
assume that the column element needed 
concrete of a minimum strength of 30 
MPa, the field engineer would have to 
cast concrete that would yield a strength 
of at least 30 MPa.  

 It is apprehensible, that the strength of 
concrete depends on several factors, of 
which the constituent fraction is just one. 
Designing the constituent fractions and the 
casting protocols would be expected to 
meet the 30 MPa bench mark assuming 
the influence of other factors are curbed. 
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How certain are we that the resulting con-
crete would meet the minimum require-
ment of 30 MPa? Here comes the uncer-
tainty analysis.  

Sample cubes would be cast with the mix 
design and casting protocols, and the 
cubes would be tested for compressive 
strength after 28 days of curing, as per 
the standard testing methods. The com-
pressive strength of the sample cubes 
would then be measured and the mean 
and standard deviation would be deter-
mined, assuming all samples to be replica-
tive of each other (belonging to the same 
mix design and casting protocol). A nor-
mal distribution would then be fit taking 
into account the mean and the standard 
deviation computed above. Figure 04 
shows the PDF fitted for the compressive 
strength of 100 concrete samples cast with 
the same mix design and casting proto-
cols. The statement to report the strength 
of the concrete mix would then be 34.01 
± 3.97 MPa (considering the 2.5% and 
97.5% lines, as the area enclosed would 
be 95%). This arises from the two-tailed 
analysis of the uncertainty observed in the 
compressive strength of the concrete mix 
in consideration.  

The question in the exercise is more than 
just reporting the strength of the concrete. 
We need to make sure that the concrete 
mix designed would have a minimum 
compressive strength of 30 MPa to meet 
the design requirements for the column 

element. Statistically speaking, we will 
never be able to design a concrete mix 
that would always (100%) be above 30 
MPa in strength, yet, we can certainly 
reduce the probability of having a mix less 
than 30 MPa. In our quest to design a 
concrete mix that would have a minimum 
strength of 30 MPa, we expect a 95% 
confidence with which we can design the 
mix. That is, out of 100 sample cubes we 
cast using the mix design and protocol, 
we would be satisfied if 95 cubes per-
formed better than 30 MPa in compres-
sive strength. Now going back to Figure 
04, we will have to look for the line that 
would define the area of 5% from the left 
(which is indicated by a value of 30.69 in 
Figure 
04). 
There-
fore, it 
is evi-
dent 
that the 
con-
crete 
mix 
consid-
ered in this exercise has 95% confidence 
in attaining the minimum requirement of 
30 MPa (in fact, even our confidence 
could be more than 97.5% as the 2.5% 
line is still above 30 MPa). This analysis is 
called one-tailed, as we did not consider 
the other end of the uncertainty spectrum. 
This value (the lower boundary of 95% 

confi-
dence) of 
compres-
sive 
strength is 
termed as 
the charac-
teristics 
strength of 

concrete. Just for elaboration, if we look at 
Figure 05, the mean of the strength of 
concrete is similar to that observed in 
Figure 04. However, the spread of the 
plot is wider in Figure 05, significantly 
changing the uncertainty profile of the 
strength. As a result, the 5% confidence 
line on the left of the curve indicates a 
value of 28.90 MPa, which is less than the 
minimum requirement of the design. 
Hence, this batch of concrete mix would 
have to be rejected for application.  

Case II: Risk analysis of pollution 

Environmental engineers often have to 
analyse the risk of a pollution or a contam-
ination event. This example refers to the 
determination of risk of a contaminant 

based on the concentration in water sam-
ple, with 95% confidence. We may have 
to take several samples of water from the 
suspected water resource, in order to 
define the uncertainty in the concentration 
measurement of the contaminant. Let us 
assume that the concentration of the con-
taminant is similar in values shown in Fig-
ure 04 (mean of 34 ppm). If we are to 
report the concentration of pollutant, we 
would resort to the form of two-tailed anal-
ysis of uncertainty and state the concentra-
tion is 34.01 ± 3.97 ppm. However, the 
exercise here is to make a decision if the 
contamination is of a risk. In this exercise, 
we will have to be 95% confident to report 
if the contamination is of a risk. It is always 
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Figure 05: Contaminant concentration 
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the worse case scenario that needs to be 
taken into account in such decision mak-
ing processes. In this example, we will 
need to be sure that at least 95% of the 
samples obtained were less in concentra-
tion than the risk level denoted by authori-
ties. Therefore, in contrast to the one-
tailed analysis considered in the concrete 
example where the left side of the range 
was considered, we will still have to look 
at a one-tailed analysis, yet on the right 
side of the spectrum this time. Suppose, a 
concentration of the pollutant more than 
38 ppm is defined dangerous by the au-
thorities, considering Figure 04, we could 
observe that 95% of the area was less than 
37.34 ppm. This indicates that we can be 
95% confident that the pollutant is not of a 
risk. However, looking at Figure 05, we 
could not be of 95% confidence as the 
line that represents 95% is 39.06 ppm, 
which is above the threshold set by the 
authorities. It is therefore understandable 
that the uncertainty analysis needs to be 
prudently handled and interpreted based 
on the cases, specific to the conditions 
and objectives of the exercises. This 
brings us to the next form of uncertainty 
analyses in engineering discipline. Uncer-
tainty of measurements and numerical 
values propagate as the values traverses 
through functional computations. This 
phenomenon is called propagation of 
uncertainty and it is crucial in making de-
cisions.  

Measurements are taken for subsequent 
analyses that often involve computational 
functions. For example, we may be inter-
ested in quantifying the moisture content 
of a soil sample, where the measurements 
would include, the weight of wet soil and 
dry soil with pan and the weight of pan. 
Each measurement (three in total) would 

have an uncertainty. Suppose we took only 
one sample from the field to quantify the 
moisture content, and we take one read-
ing for each value, what is the probability 
that each value we measured was correct? 
This necessitates taking multiple measure-
ments on multiple replicative samples (in 
this analysis, the wet soil once dried, can-
not be used again, requiring multiple 
samples). From each sample, we could 
define the mean and standard deviation, 
and hence on assuming a normal distribu-
tion, could define the uncertainty in each 
measurement (three weights). It is appar-
ent at this point, that the ultimate goal of 
the exercise was to compute the soil mois-
ture content, which depends on the three 
weight measurements taken with the un-
certainty defined. The function to compute 
soil moisture content would be,  

Let us assume the following values for the 
variables measured,  

Weight of wet soil + pan = 256.25 ± 16.52 

Weight of dry soil + pan = 206.46 ± 18.92  

Weight of pan = 124.26 ± 35.23 

Had we not considered the uncertainty in 
the measurements, and computed mois-
ture content based only on the average 
(mean) values for each measurements, the 

computed value would have been 0.377. The 
question then arises is, how confident 
could we report this as the soil moisture 
content, knowing that each measurement 
had significant uncertainty. With a similar 
observation and assuming that the proba-
bility of a measurement being the mean 
value is approximately 2% for each meas-
urement taken in this example, we could 
compute the probability of the soil mois-
ture content computed based on means 
alone may be much less than 1%. The 

value we would then report would not 
even have 1% confidence. The uncertainty 
of each measurement propagates through 
the functional computation together with 
the mean value , resulting in an uncertain-
ty range for the soil moisture content. 
Propagation of uncertainty through com-
putations are analysed through various 
methods, including the popular calculus 
method. Discussion on the methods em-
ployed to analyse propagation of uncer-
tainties is beyond the scope of this article, 
yet, I will take one of the method to dis-
cuss the factors that affect the propagation 
of uncertainty.  

 Consider a function of multiple variables, 
Z = f(A, B, C, ...). The uncertainty in Z will 
have multiple components arising from 
each variables (changing each variable 
while others are kept constant). When 
uncertainties in variables all variables are 
independent variables, the total error in  is 
given by, 

αz, αA, αB, αC,… are uncertainties in Z, A, B, 
C…. respectively. It is therefore under-
standable that the uncertainty of a value in 
Z would not only depend on the uncertain-
ty of the values of each variable (αA, αB, αC 
…), but also on the partial derivatives of 
the function Z with respect to each varia-
bles. Mathematically speaking, we are 
aware that the partial derivatives would 
also include the constants in the functions 
attached to variables and their transforms, 
depending on the variable form. It is 
therefore clear that the uncertainty in Z 
would have significant impact from the 
functional arbitrary constants together with 
the form of variables and their composite 
functional forms.  

This takes us to the last section of this arti-
cle, the impact of uncertainty propagation 
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in research and why experimental design 
is critical in research. I will discuss 
through my personal experience. In a 
research study on pervious concrete, we 
designed the experiments with the objec-
tive of analysing the porosity of samples 
with different mix designs. One of the 
method employed in the study to measure 
porosity of concrete samples was the wa-
ter displacement method (the volume of 
water displaced when the sample is fully 
immersed equals the volume of solids in 
the concrete sample). As such, the differ-
ence in the water level had to be meas-
ured.  

Taking linear measurements with a ruler 
was the option considered, while the ruler 
used for the measurement had a least 
count of 1 mm. Theoretically the least 
count of the measurements could be then 
approximated to 0.5 mm in water levels 
measured. The dimensions of the water 
bath was designed to be 300 mm in 
length and width, amounting to a cross-
sectional area (plan view) of 0.09 m2. The 
concrete samples were of dimensions 150 
mm cube, with a volume of 0.003375 m3. 
The least count of porosity measurement 
would correspond to therefore, 0.5 mm 
rise in the water level, accounting to ap-
proximately 1.3% porosity change.  

Least count of measurement also means 
that any measurements in between would 
be approximated to 0.5 mm (up or down, 
with eye estimation). In that case, the least 
count could also be considered as a defi-
nite uncertainty, on top of other random 
uncertainties embedded in the measure-
ments taken. This could mean that the 
uncertainty in porosity measurement 
would be at least 1.3%, which translates to 
2.6% as a range around the mean. The 
porosity of pervious concrete could 
change between 15 — 35% depending on 
several mix design and mixing protocols, 
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Figure a 

The software developed by ORACLE, known 
as Crystal ball, facilitate the analysis of uncer-
tainty propagation through functional compu-
tations through number of trials. This is an 
add-on to MS Excel, making it available for 
analysis on the excel worksheets that could 

be used for computational exercises. Figure 
a shows the add-on Crystal Ball in MS-Excel, 
and the tools available for analyses. The 
software can do several analyses on the data 
and uncertainty, but this article will discuss 
the basics of the uncertainty propagation.  

STEP 01: Variables 

Identify the independent variables and depend-
ent  (forecast) variables. The forecast variable 
must be predicted from independent variables 
by a computational function. Eg., consider soil 
moisture content. Figure b, variables in red are 
independent variables; variable moisture con-
tent (dependent variable) was computed from 
The values in the first row show the mean val-
ues measured and the values in the second 
row show the standard deviation.  

Figure c 

Figure d 

Figure b 

Figure f 

Figure e 

Figure g 

STEP 02: Define distributions 

Next step would be to define the uncertainty 
for each variable. Select the cell that needs to 
be assigned uncertainty, and then click on 
‘define assumptions’ from Crystal Ball tool box. 
Figure c dialogue box will open. To define an 
uncertainty arising from random error, a nor-
mal distribution would suffice, while other 
forms of PDFs would be required when the 
distribution of uncertainty for the measurement 
is known.  

STEP 03: Define assumptions 

After selecting the normal distribution for the 
uncertainty in the previous step, dialogue box 
shown in Figure d opens up. By default, the 
tool recognizes the selected cell for mean 
and it computes 10% of the mean value as 
standard deviation, which can be altered. By 
clicking on the small icon next to the text box 
for mean and standard deviation, we may 
assign values from an excel sheet, or with 
convenience, we could enter numerical value 
directly into the text boxes. The worksheet cell 
that is being assigned uncertainty is shown in 
the top bar of the dialogue box, with the 
name of the variable in the text box next to 
name. Once you have assigned the uncertain-
ty, the corresponding cell in worksheet would 
turn green. Likewise, we will need to assign 
the uncertainties for the remaining independ-
ent measurements.   

STEP 04: Define forecast 

Define prediction variable. By selecting the 
dependent variable (eg., the moisture content 
mean) we would be led to the dialogue box 
shown in Figure e. Unless we would want to 
change any of the items shown, we may accept 
the entries to follow.  
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and that 2.6% uncertainty would be signifi-
cant (the change in porosity with mix de-
signs may be less comparable or less than 
2.6%). Models developed to predict po-
rosity from mix designs and mixing proto-
cols would therefore have a very high 
uncertainty, resulting in rejection of the 
model.  

A solution for this would be to consider 
the measurement methods and tools prior, 
considering the uncertainty analysis. 
Based on the function using the calculus 
method, we may compute the accuracy 
required in measurements from the accu-
racy envisaged in the modeling parame-
ters. For example, for an accuracy of ap-
proximately 0.1% porosity, we may need a 
water tank of dimensions of 200 mm by 
200 mm with a least count measurement 
of 0.1 mm in the vertical scale (measuring 
the displacement of water).  

In conclusion, it is important to have a 
fundamental understanding of the data 
that the study would include and that plan-
ning the experiments with the accuracy of 
model predictions expected in designing 
experiments are critical in successfully 
carrying out a research study. This would 
necessitate analysis of uncertainty includ-
ing uncertainty propagation. In addition, 
analysis of uncertainty assist in making 
confidence level and confidence bounds 
for predictions, that would in turn help 
define the application potential or scope 
of application in subsequent exercises. 
Uncertainty analysis is therefore a necessi-
ty and not a choice.  
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STEP 05: Assign trial properties 

In the tool bar shown in Figure a, define the 
preferred number of trials in the section, ‘Run’. 
Eg. 10,000. The software, would now pick 
10,000 values for each independent variable, 
according to the PDF defined in STEP 03. For 
example, if 10,000 trials are sought, and the 
PDF defined has a probability of approximately 
2% for the mean value, approximately 200 
values would be assumed close to the mean. 
Simultaneously, the probability of the value at 
one standard deviation away from the mean 
value would have less than 0.2 % and that in 
10,000 trials, only 20 values would be assumed 
close to the that value. These values are ran-
domly assigned between the independent varia-
bles (not coordinated) and the software com-
putes the soil moisture content in each trial. It 
then plots a histogram for the forecast variable 
as shown in Figure f.   

STEP 06: PDF fitting 

By clicking on the forecast tab on the dialogue 
box shown in Figure f, and select ‘Fit probability 
distribution’, which will automatically select the 
best representing probability distribution func-
tion for the histogram obtained in Figure 09. 
Figure g shows the logistic PDF fitted to the 
above obtained data.  

STEP 07: Confidence limits 

By double clicking the red-curved line, the 
dialogue box shown in Figure h could be 
opened. In this box we could choose the as-
pects of the distribution we would want to see 
displayed. For example, checking the check 
box, ‘Percentile’ and then selecting custom and 
entering 2.5 and 97.5 in the text box will give 
the range of values between which 95% of the 
area of the PDF is encompassed. From Figure i, 
it could be observed that the area below -0.11 
and the area above 0.88 are each 2.5% of the 
PDF, leaving 95% of the area between -0.11 and 
0.88. Therefore, it could be stated with 95% 
confidence that the soil moisture content of the 
sample is between -0.11 and 0.88. Assuming 
symmetric property of the PDF, this could be 
approximately given as 0.385 ± 0.495 (mean 
with 95% confidence interval). However, this 
notation may have two different values, should 
the PDF is asymmetric in nature.  

STEP 08: Effect of trials 

It is important to talk about the number of trials, 
and the impact it may have on the accuracy of 
the computation of soil moisture content and the 
uncertainty related to it. Consider the same 
example with 100,000 trials and 1000 trials. 
Figures j and k show the corresponding plots. 
The plot gets smoother, however, as the num-
ber of trials are increased, the running time for 
the trials would be significantly increased.  

STEP 09: Sensitivity analysis 

Figure l shows the sensitivity analysis of the 
model of soil moisture content. The sensitivity of 
a variable significantly depends on both uncer-
tainty of a variable and the function. (a) has 
uncertainty as assigned, (b) has uncertainty of 
wet soils weight reduced to half and (c) has 
uncertainty of 10% of the variable value.  
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